Free vibration of conical shells under arbitrary elastic boundary and simulation verification

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Free and Forced Vibration Analysis of Composite Laminated Conical Shells under Different Boundary Conditions Via Galerkin Method

In this paper, natural frequency and response of forced vibration of composite laminated conical shells under different boundary conditions are investigated. To this end, equations of Donnell's thin shell theory are used as governing equations. The analytical Galerkin method together with beam mode shapes as weighting functions is employed to solve the problem. Due to importance of boundary con...

متن کامل

Vibration analysis of FGM cylindrical shells under various boundary conditions

In this paper, a unified analytical approach is proposed to investigate vibrational behavior of functionally graded shells. Theoretical formulation is established based on Sanders’ thin shell theory. The modal forms are assumed to have the axial dependency in the form of Fourier series whose derivatives are legitimized using Stokes transformation. Material properties are assumed to be graded in...

متن کامل

Free Vibration Analysis of Microtubules as Orthotropic Elastic Shells Using Stress and Strain Gradient Elasticity Theory

In this paper, vibration of the protein microtubule, one of the most important intracellular elements serving as one of the common components among nanotechnology, biotechnology and mechanics, is investigated using stress and strain gradient elasticity theory and orthotropic elastic shells model. Microtubules in the cell are influenced by internal and external stimulation and play a part in con...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Physics: Conference Series

سال: 2021

ISSN: 1742-6588,1742-6596

DOI: 10.1088/1742-6596/1885/3/032059